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Goal of this series of talks

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics
2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients.

4 MRS factorisation: A local system of coordinates for Hausdorff
groups.
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CCRT[16] Higher order BTT (part 1).

Disclaimer. – The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.

1 Paths drawn on the Magnus group.

2 Local analysis

3 Integration and Picard’s process

4 Analysis of the classical BTT

5 todo: from now Definition of evolution equations

6 Computations with differential modules

7 Some concluding remarks
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Introduction

1 Today, and in subsequent parts, we are going to analyse the first form of the
BTT and its extensions (Proof, Boundaries investigations (Bourbaki’s
method), Picard’s generalized process, closed subgroups, localization, &c.).

2 The mental process for the making of the BTT [9] will be the following

Slicing the obervable→ Differentiation→︸ ︷︷ ︸
Analysis

Technical condition→ NSC→ Proof & Boundaries︸ ︷︷ ︸
Synthesis/Integration

3 This method is not new, it is that of Archimedes (-287, -212) [1], Liu Hui
(220-280) [13] and Cavalieri (1598-1647) [6]. Archimedes work was
originally thought to be lost, but in 1906 was rediscovered in the celebrated
Archimedes Palimpsest.
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a b

Figure: Analysing the observable:
Here sampling.
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a b

yT − yB

∆x

yT

yB

Figure: Analysing the observable:
Limiting process.

Synthesising: integration.
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Remarks
1 Samplings

Figure: Lebesgue’s integral is based on another concept (y -axis sampling
and measurement of measurable sets). Its merit is to be compatible with
pointwise limits.

2 Riemann integral being based on x-axis sampling is connected to
antiderivatives and differential algebra.
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Paths drawn on Magnus groups.

4 We start from the picture of CCRT[10] (with two paths drawn)

Lie Group G

L(G ) (Lie algebra)

y(t)

y(t)
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Towards BTT: paths drawn on Magnus groups./2

5 In this case y ′(t)y(t)−1 = m(t) is a path drawn on the tengent space
of 1 + C+〈〈X 〉〉 i.e. drawn on C+〈〈X 〉〉 which amounts, for t = z ∈ Ω
to M ∈ H(Ω)+〈〈X 〉〉.

Lie Group G

L(G ) (Lie algebra)

y(t)

y(t)

c

y ′(t)
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Paths drawn on Magnus groups./3

6 Conversely, given any M ∈ H(Ω)+〈〈X 〉〉, the system{
d(S) = M.S
S(z0) = 1H(Ω)〈〈X 〉〉

(1)

has a unique solution which is the limit of Picard’s process

S0 = 1X∗ ; Sn+1 = 1X∗ +

∫ z

z0

M.Sn(s)ds (2)

7 This limit is stationary due to

Sn = S0 +
∑

0≤j≤n−1

Sj+1 − Sj and Sj+2 − Sj+1 =

∫ z

z0

M.(Sj+1 − Sj)
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Paths drawn on Magnus groups./4

8 There are many ways to obtain regular paths drawn on Magnus
groups. For example, setting L =

∑
w∈X∗ Liw w , the series

T = Le−x0 log(z) satifies{
d(T ) = (

x0

z
+

x1

1− z
).T + T (

−x0

z
)

limz→0 T (z) = 1H(Ω)〈〈X 〉〉
(3)

9 Such systems can always be converted to systems with left multipliers
with M(z) = d(S)S−1
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What is BTT ?

10 What is BTT ?. – (Concrete form) BTT concerns “step-one”
iterated integrals. The framework is the following
Let Ω ⊂ C (a connected open subset) and a family of inputs (ux)x∈X
where ux ∈ C (C is a differential subfield of M(Ω) = Frac(H(Ω))
containing C)
Concrete BTT is a theorem which gives necessary and sufficient
conditions for all the tree of coordinates (i.e. the family (〈S |w〉)w∈X∗
of a solution of a system (4) to be C linearly independent). More
precisely, given a family of inputs (ux)x∈X we suppose that S satisfies{

d(S) = M.S with M =
∑

x∈X ux x
〈S |1X∗〉 = 1H(Ω)〈〈X 〉〉

(4)

BTT gives criteria for (〈S |w〉)w∈X∗ to be C-linearly free.
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What is BTT ?/2

11 Why BTT abstract form ?. – BTT has been cited 48 times so far
(30/03/21). Outside of our school it has been used as a crucial point
at least 2 times [14, 16].
For the following reasons, we must have a general, characteristic-free
form (and its variations).

1 It provides deep reasons, is easy to analyse and create variations
2 It implies the concrete form and is a good test for boundaries

(conditions and function field/algebra)
3 It can be reused in other contexts [14, 16]

12 What is BTT abstract form ?. –
1 The algebra (H(Ω), d/dz) is replaced differential algebra (A, ∂) (not

necessarily graded, and not necessarily sectioned).
2 Inputs belong to a differential subfield C containing the constants.
3 The system d(S) = M.S , 〈S |1X∗〉 = 1A is considered as already

integrated with various multipliers.
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BTT original: hypotheses.

Theorem (DDMS Original, and characteristic-free, [9])

Let (A, ∂) be a commutative differential ring and C a differential subfield
of A containing the constants k = ker(∂) (i.e. ∂(C) ⊂ C ⊃ k). We
suppose that S ∈ A〈〈X 〉〉 is a solution of the differential equation

d(S) = M.S ; 〈S |1X∗〉 = 1A (5)

where the multiplier M is an homogeneous series (a polynomial in the case
of finite X ) of degree 1, i.e.

M =
∑
x∈X

ux x ∈ C〈〈X 〉〉 . (6)

and the differential operator acts termwise on series i.e.

d(S) =
∑

w∈X∗ ∂(〈S |w〉)w
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BTT original: chain of equivalent conditions

Theorem (cont’d)

The following conditions are equivalent :

i The family (〈S |w〉)w∈X∗ of coefficients of S is free over C.

ii The family of coefficients (〈S |y〉)y∈X∪{1X∗} is free over C.

iii The family (ux)x∈X is such that, for f ∈ C and αx ∈ k

∂(f ) =
∑
x∈X

αxux =⇒ (∀x ∈ X )(αx = 0) . (7)

iv The family (ux)x∈X is k-free and

∂(C) ∩ spank

(
(ux)x∈X

)
= {0} . (8)
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Illustration with iterated integrals

1X∗

x0

x2
0

x3
0x1x

2
0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x
2
1x3

1

Some coefficients with X = {x0, x1}; u0(z) = 1
z

; u1(z) = 1
1−z

, ∗0 = 0

〈S|xn1 〉 =
(−log(1− z))n

n!
; 〈S|x0x1〉 = Li2(z)︸ ︷︷ ︸

cl.not.

= Lix0x1
(z) =

∑
n≥1

zn

n2

〈S|x2
0 x1〉 = Li3(z)︸ ︷︷ ︸

cl.not.

= Li
x2
0
x1

(z) =
∑
n≥1

zn

n3
; 〈S|x1x0x1〉 = Lix1x0x1

(z) = Li[1,2](z) =
∑

n1>n2≥1

zn1

n1n
2
2

〈S|x0x
2
1 〉 = Li

x0x
2
1

(z) = Li[2,1](z) =
∑

n1>n2≥1

zn1

n2
1n2

; above “cl. not.” stands for “classical notation”
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Insights from the proof of BTT

i =⇒ ii Obvious, by restriction. Condition ii is that of the “basic
triangle” (we will see that it is robust to localisation)
ii =⇒ iii This condition comes from the consideration of fuchsian

multipliers (i.e. M =
∑

x∈X
λx x
z−ax , ax all different and λx 6= 0), as if

f ∈ C = C(z), the derivative ∂(f ) has no simple pole.
iii ⇐⇒ iv This condition (iv) is simply a reformulation of (iii) in terms of
subspaces.
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Proof of BTT itself/1

13 The first implications
i =⇒ ii Obvious, by restriction.
ii =⇒ iii This condition comes from the consideration of fuchsian

multipliers (i.e. M =
∑

x∈X
λx x
z−ax , ax all different and λx 6= 0), as if

f ∈ C = C(z), the derivative ∂(f ) has no simple pole.
At the logical level (and in full generality), if one has a relation as in
the LHS of (7), then f −

∑
x∈X αx〈S |x〉 must be a constant c and

then (f − c).1A −
∑

x∈X αx〈S |x〉 = 0 and from (ii), one gets
(αx)x∈X = 0.
iii ⇐⇒ iv This condition (iv) is simply a reformulation of (iii) in
terms of subspaces.
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Proof of BTT itself/2: the hard part.

14 The hardest part
iii ⇐⇒ i This is the hard (and most mysterious) part.
Remark that, due to the pairing

A〈〈X 〉〉 ⊗C C〈X 〉 → A (9)

the module R of C-linear relations between the family of coefficients
(〈S |w〉)w∈X∗ is the space (C-submodule, actually)

R = ker(P 7→ 〈S |P〉) (10)

of polynomials C〈X 〉 such that 〈S |P〉 = 0A.

15 If R = {0C〈X 〉}, we are done (i.e. (〈S |w〉w∈X∗ is C-free). Let us now
deal with the other case (R 6= {0C〈X 〉}).
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Proof of BTT itself/3

16 In this last case, we take a well ordering ≺wo on X and order words
by ≺grlex i.e.

u ≺grlex v ⇐⇒ |u| < |v | or u = pxs1 v = pys2 and x ≺wo y

Every non zero Q ∈ Rr {0} reads

Q = λ.w +
∑

u≺grlexw

〈P|u〉 u = λ.lead(Q) +
∑

u≺grlexw

〈P|u〉 u (11)

We choose P as the Q ∈ Rr {0} with the least lead(P) and, due to
the fact that C is a field, we can suppose P to be monic,
〈P|lead(P)〉 = 1.
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• • • • • • • • • • • • •

• • • • • •

• • • • •

• • • • • •

• • •

•

supp(P)

Figure: A polynomial P ∈ C〈X 〉r {0}, its support is drawn with black spots. The
homogeneous slices are designed in pale blue. The leader monomial lead(P)
(within the blue circle) is the rightmost word of the support in the upper row.
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Proof of BTT itself/4

17 Now comes two important remarks
1 Pairing (9) follows Leibniz rule i.e.

∂(〈S |P〉) = 〈d(S)|P〉+ 〈S |d(P)〉

2 We can transpose multiplication (one of the greatest tricks in
mathematics: Cayley and Lagrange thms, Ring theory, Harmonic
analysis, Distribution theory, Symmetric functions, shifts in Spectral
theory).

18 For that particular polynomial (minimal monic in Rr {0C〈X 〉}), we
compute

∂(〈S |P〉) = 〈MS |P〉+ 〈S |P ′〉 = 〈S |M−1P〉+ 〈S |P ′〉
= 〈S |M−1P + P ′〉 (12)
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Proof of BTT itself/5

19 We have the following lemma

Lemma

Let R be a ring, X an alphabet, T ,A ∈ R〈〈X 〉〉,B ∈ R〈X 〉, then
i) We have

〈TA|B〉 = 〈A|T−1B〉 (13)

where T−1B ∈ R〈X 〉 is such that, for all w ∈ X ∗, 〈T−1B|w〉 = 〈B|Tw〉.
ii) If R1 is a subring and T ∈ R1〈〈X 〉〉 (resp. B ∈ R1〈X 〉) then
T−1B ∈ R1〈X 〉.

Proof.

Left to the reader.
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Proof of BTT itself/6

20 Restarting from (12), we get M−1P + P ′ ∈ R which cannot be 6= 0
because, otherwise, we would have

lead(M−1P + P ′) ≺grlex lead(P)

21 Then P ′ = −M−1P

22 Firstly, for |w | = |lead(P)| (the uppermost row), we have
∂(〈P|w〉) = 〈P ′|w〉 = −

∑
x∈X ux〈P|xw〉 = 0

then, for |w | = |lead(P)|, 〈P|w〉 ∈ ker(∂) = k

23 Secondly, as it is impossible that lead(P) = 1X∗ , we can set
lead(P) = yu (y ∈ X , initial letter) and likewise

∂( 〈P|u〉︸ ︷︷ ︸
∈C

) = −
∑

x∈X ux 〈P|xu〉︸ ︷︷ ︸
∈k

= 0

we are then in the configuration of condition (iii) in BTT, then all
coefficients (〈P|xu〉)x∈X are zero including 〈P|yu〉, contrariwise to the
initial normalisation 〈P|lead(P)〉 = 1.
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Localization of the BTT

Theorem (DGMSV [10])

Let (A, ∂) be a commutative associative differential ring with subring of
constants k = ker(∂). Let C be a differential subring (i.e. ∂(C) ⊂ C) of A which
is an integral domain such that ker(∂Frac(C)) = Frac(k).
We suppose that, for all x ∈ X , ux ∈ C and that S ∈ A〈〈X 〉〉 is a solution of the
differential equation (5).
Then TFAE:

i The family (〈S |w〉)w∈X∗ of coefficients of S is free over C.

ii The family of coefficients (〈S |y〉)y∈X∪{1X∗} is free over C.

iii For all f1, f2 ∈ C, f2 6= 0 and α ∈ k(X ), we have the property

W (f2, f1) = f 2
2 (
∑
x∈X

αxux) =⇒ (∀x ∈ X )(αx = 0) . (14)

where W (f2, f1), the wronskian, stands for ∂(f1)f2 − f1∂(f2).
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Discussion

i). – We have supposed that ker(∂Frac(C)) = Frac(k) because it is not granted
that this holds from k ⊂ C. Indeed, take A = C = C[x , y ] and D = x∂x + y∂y
(Euler total degree number operator, already met, see CCRT[15], slide 12 and ff).
Then k = C and nevertheless x/y ∈ ker(∂Frac(C)). See also discussion in [22].
ii). – In fact, in the localized form and with C not a differential field, condition
(iii) (slide 15) is strictly weaker than (iii) (slide 25), as shows the following family
of counterexamples

1 Ω = Cr (]−∞, 0])

2 X = {x0}, u0 = zβ , β /∈ Q
3 C0 = C{{zβ}} = C.1Ω ⊕ spanC{z (k+1)β−l}k,l≥0

4 S = 1Ω + (
∑

n≥1
zn(β+1)

(β+1)nn! )

Let us show that, for these data (iii) holds but not (i).
Firstly, we show that C0 = C{{zβ}} corresponds to the given direct sum. We
remark that the family (zα)α∈C is C-linearly free (within H(Ω)), which is a
consequence of the fact that they are eigenfunctions, for different eigenvalues, of
the Euler operator z d
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Then

C{{zβ}} = C1Ω ⊕ spanC{z(k+1)β−l}k,l≥0 = spanC{z(k ′)β−l}k ′,l≥0

comes from the fact that the RHS is a subset of the LHS as, for all,
k , l ≥ 0, z(k+1)β−l ∈ C{{zβ}}. Finally 1Ω ∈ C{{zβ}} by definition (C{{X}}
is a C-AAU).
(iii) is fulfilled. Here

u0(z) = zβ is such that, for any f ∈ C0 and c0 in C, we have

c0u0 = ∂z(f ) =⇒ (c0 = 0) (15)

But (i) is not Because we have the following relation

(β + 1)zβ−1〈S |x0〉 − z2β.1Ω = 0
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Sketch of the proof

After some technicalities, we show that (5) can be transported in
A[(C×)−1] by means of the following commutative diagram and back.

C Fr(C)

A A[(C×)−1]

C Fr(C)

A A[(C×)−1]

ϕC

j

d

dfrac

jfrac

ϕA

dfrac
ϕC

j jfrac
ϕA

d
(16)
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Proof that [1Ω, log(z), log(
1

1−z )] is CR-free.

Recall that CR = C[(zα, (1− z)−β)α,β∈R] and let us suppose Pi , i = 1 . . . 3 such
that

P1(z) + P2(z) log(z) + P3(z)(log(
1

1− z
)) = 0Ω

We first prove that P2 =
∑

i∈F ciz
αi (1− z)βi is zero using the deck

transformation D0 of index one around zero.
One has Dn

0 (
∑

i∈F ciz
αi (1− z)βi ) =

∑
i∈F ciz

αi (1− z)βi e2iπ.nαi , the same
calculation holds for all Pi which proves that all Dn

0 (Pi ) are bounded. But one
has Dn

0 (log(z)) = log(z) + 2iπ.n and then

Dn
0 (P1(z) + P2(z) log(z) + P3(z)(log(

1

1− z
))) =

Dn
0 (P1(z)) + Dn

0 (P2(z))(log(z) + 2iπ.n) + Dn
0 (P3(z)) log(

1

1− z
) = 0

It suffices to build a sequence of integers nj → +∞ such that
limj→∞D

nj
0 (P2(z)) = P2(z) which is a consequence of the following lemma.

29 / 36



Lemma

Let us consider a homomorphism ϕ : N→ G where G is a compact
(Hausdorff) group, then it exists uj → +∞ such that

lim
j→∞

ϕ(uj) = e

Proof.

First of all, due to the compactness of G , the sequence ϕ(n) admits a
subsequence ϕ(nk) convergent to some ` ∈ G . Now one can refine the
sequence as nkj such that

0 < nk1 − nk0 < . . . < nkj+1
− nkj < nkj+2

− nkj+1
< . . .

With uj = nkj+1
− nkj one has limj→∞ ϕ(uj) = e.

End of the proof One applies the lemma to the morphism

n 7→ (e2iπ.nαi )i∈F ∈ UF
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Conclusion

For Series with variable coefficients, we have a theory of
Noncommutative Evolution Equation sufficiently powerful to cover
iterated integrals and multiplicative renormalisation

Use of combinatorics on words gives a necessary and sufficient
condition on the “inputs” to have linear independance of the solutions
over higher function fields.

Picard (Chen) solutions admit enlarged indexing w.r.t. compact
convergence on Ω (polylogarithmic case) but Drinfeld’s G0 has a
domain which includes only some rational series.

Localization is possible (under certain conditions).

Local BTT theorem allows to explore linear and algebraic
independences w.r.t. subalgebras of Dom(Li).
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THANK YOU FOR YOUR ATTENTION !
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